Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 120

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Assessment of hydrogen embrittlement behavior in Al-Zn-Mg alloy through multi-modal 3D image-based simulation

Fujihara, Hiro*; Toda, Hiroyuki*; Ebihara, Kenichi; Kobayashi, Masakazu*; Mayama, Tsuyoshi*; Hirayama, Kyosuke*; Shimizu, Kazuyuki*; Takeuchi, Akihisa*; Uesugi, Masayuki*

International Journal of Plasticity, 174, p.103897_1 - 103897_22, 2024/03

 Times Cited Count:0

Hydrogen(H) embrittlement in high-strength aluminum(Al) alloys is a crucial problem. H accumulation at the interface of precipitates in Al alloy is considered to cause embrittlement. However, there is no quantitative knowledge regarding the interaction between H distribution and stress field near cracks. In this study, using a multi-modal three-dimensional image-based simulation combining the crystal plasticity finite element method and H diffusion analysis, we tried to capture the stress distribution near the crack, its influence on the H distribution, and the probability of crack initiation in the experimental condition. As a result, it was found that grain boundary cracks transition to quasi-cleavage cracks in the region where the cohesive energy of the semi-coherent interface of MgZn$$_2$$ precipitates decreases due to H accumulation near the tip. We believe the present simulation method successfully bridges nanoscale delamination and macroscale brittle fracture.

Journal Articles

Multi-modal 3D image-based simulation of hydrogen embrittlement crack initiation in Al-Zn-Mg alloy

Higa, Ryota*; Fujihara, Hiro*; Toda, Hiroyuki*; Kobayashi, Masakazu*; Ebihara, Kenichi; Takeuchi, Akihisa*

Keikinzoku, 73(11), p.530 - 536, 2023/11

In Al-Zn-Mg alloys, suppression of hydrogen embrittlement is necessary to improve their strength. In this study, the distribution of stress, strain, and hydrogen concentration in the actual fracture region was investigated using the crystal plasticity finite element method and hydrogen diffusion analysis based on a model derived from three-dimensional polycrystalline microstructural data obtained by X-ray CT. In addition, the distributions of stress, strain, and hydrogen concentration were compared with the actual crack initiation behavior by combining in-situ observation of tensile tests using X-ray CT and simulation. The results show that stress loading perpendicular to the grain boundary due to crystal plasticity dominates grain boundary crack initiation. It was also found that internal hydrogen accumulation due to crystal plasticity has little effect on crack initiation.

Journal Articles

Analysis of the effect of pre-crack curvature in Mini-C(T) specimen on fracture toughness evaluation

Shimodaira, Masaki; Ha, Yoosung; Takamizawa, Hisashi; Katsuyama, Jinya; Onizawa, Kunio

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 11 Pages, 2023/07

In the current structural integrity assessment of the reactor pressure vessel, the accurate reference temperature (T$$_{o}$$) based on the Master Curve method is necessary. The T$$_{o}$$ can be estimated by using the Mini-C(T) fracture toughness specimen in accordance with ASTM E1921 and JEAC4216, which prescribe the pre-crack straightness criteria. A requirement in ASTM E1921 has been revised in a decade to increase the accuracy and reasonability, and the applicable crack curvature has been varied by applied codes. The pre-crack curvature of the Mini-C(T) specimen might have an impact on the T$$_{o}$$ because of the variation of the plastic constraint. In this work, the effect of the crack curvature on the fracture toughness (K$$_{Jc}$$) evaluation using the Mini-C(T) specimen was quantitatively evaluated by using the finite element analysis (FEA) including the Weibull stress analysis, to discuss the difference in a requirement of the crack straightness in ASTM E1921 and JEAC4216. FEAs showed a possibility that the upper limit curvature would decrease the plastic constraint, and consequently obtain higher K$$_{Jc}$$ in the Mini-C(T) specimen. Furthermore, if the upper limit curvature according to the ASTM E1921-21 was allowed, the T$$_{o}$$ would be estimated as non-conservative based on the Weibull stress analysis. In contrast, the difference in (T$$_{o}$$) between the crack with upper limit curvature according to JEAC4216 and the ideal straight crack was not significant.

Journal Articles

Effect of pulsed laser irradiation on the micro-plastic behavior of radiation shielding lead glasses

Wakui, Takashi; Yamasaki, Kazuhiko*; Futakawa, Masatoshi

Jikken Rikigaku, 22(2), p.96 - 104, 2022/06

Pulsed laser irradiation and indentation tests on radiation shielding glasses and a lead-free glass were carried out. The size of irradiation damage of the glass with high lead content was larger than that with low content. The micro plastic behavior of glasses was quantitatively determined using the inverse analyses based on indentation results. Flow stress decreased with an increase of lead content and that in irradiated area was lower than that in unirradiated area. On the other hand, plastic flow resistance increased with an increase of the lead content and that in irradiated area was higher than that in unirradiated area. Fracture energy and critical size of plastic zone around tip of crack in unirradiated and irradiated areas were calculated based on experimental results including constants evaluated using the inverse analysis. These values decreased with an increase of the lead content and these values in irradiated area were lower than that in unirradiated area.

Journal Articles

Introduction of application examples of ultrasonic simulation in the development of nuclear reactor measurement technology

Abe, Yuta; Otaka, Masahiko; Sekiya, Naoki*; Makuuchi, Etsuyo*

Hihakai Kensa, 71(2), p.69 - 74, 2022/02

no abstracts in English

Journal Articles

Constraint effect on fracture behavior of underclad crack in reactor pressure vessel

Shimodaira, Masaki; Tobita, Toru; Takamizawa, Hisashi; Katsuyama, Jinya; Hanawa, Satoshi

Journal of Pressure Vessel Technology, 144(1), p.011304_1 - 011304_7, 2022/02

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

In the structural integrity assessment of a reactor pressure vessel (RPV), the fracture toughness (K$$_{Jc}$$) should be higher than the stress intensity factor at the crack tip of an under-clad crack (UCC), which is prescribed in JEAC4206-2016. However, differences in crack depth and existence of cladding between the postulated crack and fracture toughness test specimens would be affected to the plastic constraint state and K$$_{Jc}$$ evaluation. In this study, we performed fracture toughness tests and finite element analyses (FEAs) to investigate the effect of cladding on K$$_{Jc}$$ evaluation. FEA showed that the cladding decreased the plastic constraint in the UCC rather than the surface crack. Moreover, it was also found that the apparent K$$_{Jc}$$ for the UCC was higher than that for the surface crack from tests and the local approach.

JAEA Reports

Development of MIG2DF Version 2

Takai, Shizuka; Kimura, Hideo*; Uchikoshi, Emiko*; Munakata, Masahiro; Takeda, Seiji

JAEA-Data/Code 2020-007, 174 Pages, 2020/09

JAEA-Data-Code-2020-007.pdf:4.23MB

The MIG2DF computer code is a computer program that simulates groundwater flow and radionuclide transport in porous media for the safety assessment of radioactive waste disposal. The original version of MIG2DF was released in 1992. The original code employs a two-dimensional (vertical or horizontal cross-section, or an axisymmetric configuration) finite-element method to approximate the governing equations for density-dependent saturated-unsaturated groundwater flow and radionuclide transport. Meanwhile, for geological disposal of radioactive wastes, landscape evolution such as uplift and erosion needs to be assessed as a long-term geological and climate events, considering site conditions. In coastal areas, the impact to groundwater flow by change of salinity distribution to sea level change also needs to be considered. To deal with these events in the assessment, we have revised the original version of MIG2DF and developed the external program which enables MIG2DF to consider unsteady landscape evolution. In these developments, this report describes an upgrade of MIG2DF (Version 2) and presents the configuration, equations, methods, and verification. This reports also give the explanation external programs of MIG2DF: PASS-TRAC (the particle tracking code), PASS-PRE (the code for dataset preparation), and PASS-POST (the post-processing visualization system).

Journal Articles

Practical measurement of residual stresses using contour method

Ikushima, Kazuki*; Shibahara, Masakazu*; Kawajiri, Yoshitaka*; Okimi, Yui*; Uchida, Tomoki*; Akita, Koichi*; Suzuki, Hiroshi; Morooka, Satoshi

Nihon Senpaku Kaiyo Kogakkai Rombunshu, (30), p.123 - 130, 2019/12

In this research, the contour method was applied to measure the residual stress distribution of a bead-on-plate specimen. The measured residual stress distribution was compared with those measured by neutron diffraction method and calculated by thermal elastic plastic finite element analysis. As a result, it was found that the residual stress distribution obtained by these three methods are in good agreement. In addition, the equilibrium of reaction force on cut plane was considered in the contour method to measure residual stresses in asymmetric cutting which is assumed in the measurement of real structures. The proposed method was applied to the measurement of the residual stress in the multi-pass welded joint. The measured results indicated that the proposed method can measure the residual stress distribution in multi-pass welded joint in asymmetric test specimen.

Journal Articles

Prediction method of improved residual stress distribution by shot peening using large scale analysis method

Ikushima, Kazuki*; Shibahara, Masakazu*; Nishikawa, Satoru*; Furukawa, Takashi*; Akita, Koichi; Suzuki, Hiroshi; Morooka, Satoshi

E-Journal of Advanced Maintenance (Internet), 9(3), p.NT87_1 - NT87_5, 2017/11

Journal Articles

Thermal-hydraulics analysis of fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2017 Koen Rombunshu (CD-ROM), 4 Pages, 2017/08

A specific fuel assembly named FAIDUS (Fuel Assembly with Inner Duct Structure) has been developed as one of the measures to enhance safety of the reactor in the core disruptive accident (CDA) in JAEA. Thermal-hydraulics evaluations in FAIDUS under various operation conditions including the CDA are required to confirm its design feasibility. Therefore, numerical simulations by using thermal-hydraulics analysis program named SPIRAL developed in JAEA are conducted to analyze the thermal-hydraulics in the FAIDUS. Through the numerical simulation in the FAIDUS under tentative rated operation condition of an Advanced SFR, it was indicated that the flow and temperature distribution in the FAIDUS showed the same tendency as that in ordinary FA and specific characteristics was not observed.

JAEA Reports

Preliminary 3-dimensional analysis of groundwater flow in the surrounding environment of near surface disposal facility

Sakai, Akihiro; Kurosawa, Ryohei*; Totsuka, Masayoshi; Nakata, Hisakazu; Amazawa, Hiroya

JAEA-Technology 2016-032, 117 Pages, 2017/02

JAEA-Technology-2016-032.pdf:12.84MB

JAEA has been planning to implement near surface disposal of low level waste generated from research, medical, and industrial facilities. JAEA plans to carry out 3d analysis of groundwater flow in geological model around the disposal site because of development of migration assessment modeling of radioactivity materials in the site. In the safety demonstration test in JAEA, 3d analysis of groundwater flow was carried out on 1999. The analysis was calculated by using the code "3D-SEEP". But it is necessary to improve the conditions of the model in the analysis. Therefore, we improved the geological model which had been developed carried out 3d analysis of groundwater flow by using the current 3D-SEEP for the specified disposal site in the future. From the result, we expect that 3d analysis of groundwater flow in the environment around the specified near surface disposal site will be able to be sufficiently conducted by developing an appropriate model for the disposal site.

Journal Articles

An Illustration by the next generation numerical simulator for quake-proofing on the K

Nakajima, Norihiro; Suzuki, Yoshio; Miyamura, Hiroko; Nishida, Akemi; Kawakami, Yoshiaki; Guo, Z.; Tomiyama, Eiji*

Keisan Kogaku, 20(4), p.3338 - 3340, 2015/12

The issue 5 in the field 4 of "Monodukuri" in the HPCI strategy project is introduced. The title of the issue 5 is "research and development for the next-generation earthquake-resistant simulation of the large plants such as nuclear energy facilities". The illustration intends for a high temperature engineering examination research reactor. Implementation of FIESTA (Finite Element Analysis for Structure of Assembly) on K is described by reporting its efficiency and performance. To show a result of the numerical analysis, a visualization technique for the big data was described.

Journal Articles

Numerical analysis of flow field around simulated wire-wrapped fuel pins of fast reactor

Kikuchi, Norihiro; Ohshima, Hiroyuki; Imai, Yasutomo*; Hiyama, Tomoyuki; Nishimura, Masahiro; Tanaka, Masaaki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2015 Koen Rombunshu, p.179 - 180, 2015/08

In an economically improved sodium-cooled fast reactor, a narrower gap is considered among the fuel pins so as to achieve a high burn-up. Therefore, it is needed to evaluate thermal-hydraulic characteristics in case of a change of the gap geometry due to deformation of fuel pin caused by such as a swelling and a thermal bowing. For this purpose, a FEM analysis code, SPIRAL has been being developed in JAEA and the code validations using water or sodium experimental results have also being performed. In this study, a numerical analysis of a flow field around wire-wrapped fuel pins based on a 3-pin bundle water experiment was carried out as a validation study of SPIRAL. As a result, it was demonstrated that the hybrid-type turbulent model incorporated in SPIRAL has a high applicability to investigate the flow structure of the narrow gap in the fuel assembly.

Journal Articles

Fracture evaluation of reactor pressure vessel steel based on local approach

Takamizawa, Hisashi; Katsuyama, Jinya; Yamaguchi, Yoshihito; Nishiyama, Yutaka; Li, Y.; Onizawa, Kunio

Yosetsu Kozo Shimpojiumu 2014 Koen Rombunshu, p.97 - 100, 2014/12

no abstracts in English

Journal Articles

Atomistic and continuum comparative studies on the stress distribution around a nano-crack on the grain boundary for modeling hydrogen embrittlement of iron

Ebihara, Kenichi; Kaburaki, Hideo; Itakura, Mitsuhiro

"Hagane No Kikaiteki Tokusei Ni Oyobosu Suiso No Koka To Sono Hyoka" Shimpojium Yokoshu (USB Flash Drive), 6 Pages, 2014/09

Since hydrogen(H) embrittlement is one factor causing degradation and/or fracture of steel, understanding its mechanism is required. The grain-boundary(GB) decohesion due to segregation of H is considered to cause the delayed fracture of high strength steels and the cold cracking in welding. In the model based on GB decohesion, information of strength of GBs estimated in the atomic scale is used for the estimation of strength or crack propagation in the macroscopic scale. However the modeling between the atomic and the macroscopic scales is not clear. In particular, the validity of the model using the elastic continuum around nano-cracks for stress concentration at the crack tip is not clear. Thus, we examined the difference of the stress distribution around the nano-crack which was estimated by molecular dynamics and by a continuum calculation. As a result, the discrepancy became remarkable at high strain. The stress concentration was not simulated by the elastic continuum model.

Journal Articles

Numerical simulation of in-line and cross-flow oscillations of a cylinder

Watanabe, Tadashi; Kondo, Masaya

JSME International Journal, Series B, 49(2), p.296 - 301, 2006/05

no abstracts in English

Journal Articles

Branching mechanism of intergranular crack propagation in three dimensions

Itakura, Mitsuhiro; Kaburaki, Hideo; Arakawa, Chuichi

Physical Review E, 71(5), p.055102_1 - 055102_4, 2005/05

 Times Cited Count:9 Percentile:39.32(Physics, Fluids & Plasmas)

The process of slow intergranular crack propagation was investigated by the finite element method model and it was found that branching is induced by partial arresting of a crack front owing to the geometrical randomness of grain boundaries. A possible scenario for the branching instability of crack propagation in a disordered continuous medium is also discussed.

Journal Articles

Design of the anchor wall using 3D finite element method

Iha, Akane*; Matsubara, Hitoshi; Iraha, Shigeo*; Kanda, Yasuyuki*

Konkurito Kogaku Nenji Rombunshu (DVD-ROM), 27(2), p.1663 - 1668, 2005/00

The concrete structures such a reactor building are able to resist external forces by interaction behavior such as concrete, reinforcements, steel frames and the foundation. Therefore, it is a very important subject to solve analytically the displacement behavior and the stress distribution because the safety of structures and safe security can be offered by it. In general, such a problem is solved by using the beam theory. However, it is impossible to evaluate the different behavior or stress distribution on every component. In this paper, 3-dimensional finite element analysis of full-scale anchor wall is performed. In addition, all composition material is taken into consideration in this analysis. Consequently, concrete interaction behavior with many components is solved, and the displacement behavior and concentration of stress also is elucidated.

Journal Articles

Inverse problem on indentation load and depth curve; Identification of material constants by using a spherical indenter

Futakawa, Masatoshi; Wakui, Takashi*; Naoe, Takashi*; Ioka, Ikuo

Jikken Rikigaku, 4(3), p.222 - 227, 2004/09

no abstracts in English

Journal Articles

Structural integrity of cross-flow type mercury target

Kogawa, Hiroyuki; Ishikura, Shuichi*; Haga, Katsuhiro; Kinoshita, Hidetaka; Kaminaga, Masanori; Hino, Ryutaro

Proceedings of ICANS-XVI, Volume 3, p.1295 - 1304, 2003/07

no abstracts in English

120 (Records 1-20 displayed on this page)